Tuesday, June 11, 2019

About panspermia

Extracted from Inverview  of Fred Hoyle by Brig Klyce

source panspermia.org.

Early Biological Influences

One fortunate aspect is that my father was a direct believer in Darwin's theory. He used to tell me it was a wonderful thing, the greatest thing in science. I would say no, Newton is the greatest thing in science. He would try to explain to me Darwin's idea because he was an uneducated man — self educated I should say. Maybe he didn't do too good a job. And so, I started by thinking this is a lot of bunkum, you see, at the age of 12 or so. I just didn't believe it. I knew a lot about — I had been brought up in the country and I knew all the flowers and all this sort of stuff. And I just did not believe it.
At Cambridge I made friends with an Irishman from the north, George Carson. He had come over from the University there to do a Ph.D. in Botany here. Later when I was a research student — you didn't live in college in those days, you lived in the town. People let out rooms to advanced students, maybe 2 students. It was better if the chap you roomed with was some one you knew and got along well with. The chap I roomed with was Carson. He had just got a job.
George was a very skeptical about Darwin's theory. He always had the view that if he did the right mathematics, it would be revealed to you what was wrong with it. George always had this suspicion. But these were just biasing seeds, as it were. At that time, I never got into panspermia, in fact, didn't believe it at all. I thought it was a lot of nonsense all through the years. Until in 1975 — that's when I got involved....

From Grains to Bacteria

...Because what happened was that I put Chandra on to the problem of what the interstellar grains are and understanding their properties. And all through the sixties we thought we were doing quite well, but it was like Kepler's analysis of the motion of Mars. He had proved Copernicus's theory quite substantially, but it still was not really based on the best observations. There were small discrepancies. Eventually he became dissatisfied with these small discrepancies and it was then that he decided that instead of fitting the observations and theory, see what the observations really implied for the shape of the orbits. He would look at it that way round — observation first. Then he decided that it was an ellipse. Starting with the observations was the correct way. Chandra did the same thing. We would calculate all manner of models with different properties. There would always be decrepancies in what should have been a very simple problem — something you could calculate exactly using a digital computer.
I was working in the States in seventy-four. When I left to go there, I was under the impression that what we had done in the way of graphite particles and silicates was giving adequate results. When I came back to England there was a conference and Chandra said to me, "I'm doing to better to remove those small discrepancies if the particles are organic." That was the line of research he had pursued during the year I was away. He was adding the infrared information which we hadn't had before. At that time, we tried to fit the infrared. I discussed it. I didn't know if he was right or not. I made an unguarded remark — I said, "But Chandra, if the interstellar material is organic, if that is true, then, there is so much of it that this will be better precursor material for biology than to do it on the earth in Urey-Miller fashion." That was the unguarded remark. That set him off and then he must have looked through hundreds and hundreds of spectra to fit the infrared data among organics. And then quite suddenly as soon as he moved to biological specimens, that fit it better than anything else.
That was the history until one evening, I had been out walking in the hills and settled in front of the fire for coffee after dinner. By now he had started sending me books from the Cardiff Library. I was checking through this book and I came on the page of a diagram, a drawing of a bacteria that had been dried out. The worst source of discrepancies in our calculation was that the particle — we had always been taking them as solid, not as hollow. We discovered that if the particles are seventy percent hollow, most of our difficulties immediately disappeared. It wasn't so much a question of composition as of being hollow. That was the key point. We had never been able to remove the "knee" in the curve of the visual stuff. Lots of things we tried to adjust. It didn't do much good. It turned out it really didn't matter. They were irrelevant parameters. The key thing was to get it hollow. In other words, to get the average index of refraction low. Well — the page I discovered of the bacterium being dried out — we reproduced it from time to time. It shows that, cell walls being very strong, they don't shrivel at all. The bacterium maintains its outer envelope — this is important — with the space enveloped. And then I looked to see how much space is enveloped and the space is seventy percent. So it was from there I switched round.
So I said let's calculate. Let's get a size distribution. Use the size distribution for bacteria because we don't have to assume it, we can look in the books and see what it is, and use what it is. We know nothing about bacteria at this point, until we talked to somebody who gave us routine information. Then Chandra discovers, to his horror, that there are a million species of bacteria, and this is not do-able. He can't count a million. So we have to specify some restriction and we finally decided to keep it to spore-forming bacteria — that didn't seem to be a problem that related to the sizes and so he was able to count those. By now he had a program for his computer which, as soon as he fed it the relevant physical information of the size distribution, within an hour he had the answer. He simply called me three days later and said, "I've got a perfect fit."
It's my nature — I recognize that it must be an accident in my upbringing and the turn of the century when I was at the university — I just go from observation. I don't say, "It's absurd that there should be bacteria in space." I don't say that. It fits the observation, so it's the best theory we have. I don't care if it's absurd. So I didn't hesitate to publish it. That of course was the beginning of the disaster, the ridiculous. [With irony, of those who ridiculed the finding:] They know! They're born to know that the particles in space are not bacteria. God has told them.

No comments:

Post a Comment